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SUMMARY

Fonseca et al. (2003) obtained UMVUE for the variance components of balanced cross
nested models. The estimators were the difference of a positive and a negative part.
Unbiased estimators are obtained for the variance components of such models with cross-
nesting. Following Michalski & Zmyslony (1996) we may use the quotient of the positive
by the negative part of the estimators to test the nullity of the variance components. If either
the degrees of freedom in the numerator or in the denominator are even we have, (Fonseca
et al., 2002) an exact expression for the distribution of the test statistic. It is thus interesting
to see if this evenness conditions are a rarity or if they are satisfied in many circumstances.
If we name as first evenness condition (1*) that all components of the vector 8, are even
and as second evenness condition (2™) that all components of the vector g, are even, when
at least one of these evenness conditions holds we have an exact €xpression for the
distribution of the test statistic. We will answer this question for four factors models,
showing that in more then half of the possible degrees of freedom combinations, at least one
of the evenness conditions holds.

Key words: Cross nested balanced models, variance components, usual and generalized F
tests, evenness conditions.

1. Introduction

For four-factors models we have the following possible cases:

(a) Fully nested models [1525354].

(b) Two groups of nested factors that cross: there are two possibilities — in one
of them, one group has three factors and the other one factor I:(I D2> 3)><4 ,
while in the other case both groups have two factors I:(l 52)x(3> 4)] .
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(c) Three groups of nested factors that cross: one group has two factors and the
other two groups only one factor [(1 o2 ><3x4:| .
(d) Four factors that cross [1>< 2x3x4|.

In what follows I, will be the identity matrix of order m, J,, will be the matrix
of order m with all components equal to 1 and 1, the vector with m
components equal to 1. We represent by E( ) and Z( ) the mean vector and
covariance matrix of U. We write y ~ N(w, o’M) , when y is normal with
E(y)=,u and Y (U)=0’M ,and S ~ yy?, if S is the product by y of a
central chi-square with m degrees of freedom.

2. Estimators

Let L be the number of groups of factors. This will increase from L=1 when the
model is fully nested to L =4 when the four factors cross.
The number of factors in the L groups will be u,,...,u;. In the I" group the
factors will have indexes h, =1,...,u,; we will write 4 =0 when no factor in the
I" group is considered, [ =1,...,L.
The sets of factors belonging to distinct groups correspond to vectors k. The set
of these vectors will be

T={h:h=0,..,u;l=1..,L}.

For the balanced cross-nested design we have the model

y=3 X(0) " (h)+e,

heT
where B(0)=u, éc(h) (k) ~ N(Qc(h);o-2 (_}!)Ic(g))’ heT are mutually

independent and ¢ ~ N (9;0'21") :

Moreover X (0)=1,, with n= [H, ()

[@, X, ()] ®1,, with

X, (B) =1, ®ly)» and by (k)= } iy = ,I=1,...,L, where c,(h,)

is the total number of levels of factor h; in group /. With g, (0) =1, if the first

factor has a, (1) levels and the following have a, (k) levels nested inside each

level of the preceding factor we will have ¢, (k)= "’ a(j),!=1...,L.
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It is straightforward to see that E ( »" ) =1"u and
Z(2')=Epr 0" (R)M () + 0%, where M (h)=X (k)X (k)" =b(k)Q(h), with
0(h)= [@le O, (h )] ®1J, the orthogonal projection matrices and
b(h)= H1L=1bt (h)xr
Then with
{Q;(O)=Q1(O) I=1. L

Qz*(h )=Ql(ht)“Q1 (hl —1)

we have M (1) =b(5) 5,0 (), where the 0" (£)=[®F, 0 (k)]®LJ,, are

mutually orthogonal orthogonal projection matrices.

Now with =1, -3 «r @ (k) , according to the last expression for M (h), we can

rewrite Y ( Z") as
Z(Y')=2r(k)Q (k)+0°0,

kel’

with y(k)=0’+3 ,_ b(h)o* (k).

We now establish

Proposition 1: o° (h) =353, (- l)m(ﬂ'ﬂ') }’(b_'), where m(h,h’) is the number

of components of & that are less than the corresponding components of A’, and
U(h)= {h h <h <mm|: (h; +1); :l i=1, } means that the components of
h’" are not less then the components of A and they do not exceed these by more

than one unit.

Proof: Starting from the second member of the equality we have .

10, 2 ) 5 (- { "2y (ﬁ-’)]
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Therefore, o> (Q’) has coefficients (—l)m(M) in the corresponding terms A’

such as h'e U (h) and h’<h”.If h"=h we must have h'<h and having only

one term in o>

—_——

11'), it will have coefficient (=1)"** =1.1f A" # h we will have

B> h.Let C(h")={j:h;<h}.

Since C’ gC(ﬁ ) there exists h’e U (k) such as
jeC" hi=h;+1
jeC’ K =h,

and o? (h') enter in the corresponding term of A" with coefficient (—l)m(MJ.
. m(ﬁab’) ’ » . ’ . .
We will have / sets C'c C(h") with #(C")=1, so the coefficient of

o ( @’) will be

Since U(h):{h':hi_<_h,.'Smin[(h,.+1);u,.],i:l,...,L} we can consider two

subsets U (k)" and U (k)™ constituted by h’e U (h) for which m(h,h’) is even

or odd, respectively.
As

y(h)=0*+ 3 blK a+2b ) '+Zbﬁ')02(@'

( ) Whsh'<u ( ) ( ) KeU(n) ( ( ) KeU(h) ( )

the variance components ¢ (ﬁ) are associated to sets of vectors belonging to
different groups, and (Fonseca et al., 2003) the positive and negative parts of the
UMVUE for o7 (h) are

&’ (k) = X d(K)ig, sh<u

keU(h)"

6'(h) = ¥ d(k)x, X ;ﬁ<£.

keU(hY
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The coefficients d (k) may be found in Fonseca et al (Fonseca et al., 2003) but

we are interested in the degrees of freedom g (k)= rank[Q )] =& k),
keI, with

g(0)=1 =1, ..,L

g (1)=c(1) =1

g (k) =rank[ Q" (k) | =, (k) ¢, (k, —1) sk =2, [=1,...,L
\;V?hr,})o}v point out that the number of terms in each part of the estimator is

Moreover S(h —"Q y" 72 h#0 and S ="Q 2"2 ~0? Z; , with

(ll - -
g =n—c(u), where these chi-squares are independents.

In the cases in which m( hu ) =1, there exist unbiased estimators for the variance
components given by difference of two mean squares, so we can test the nullity
hypothesis of these components using the usual F tests. Likewise &7 (u) will

also be given by the difference of two mean squares.
Then we have the hypothesis H,,: 0 (h)=0 against H, :0” (h)>0. Now with

o(h)= ;(f,) ,

where h" is B =h+1, i=1,..,L, these hypothesis can be rewritten as
H,:6(h)=1 against H,:0(h)>1.
So, we can use the usual F tests with statistics

_s(B)S(h) _e(K) ¥(k) Zaw _ 0,8 (H) Haw
= W sW) s 70 2y P2 2y

In the cases in which m(h,u)>1, there do not exist unbiased estimators for the
variance components given by the difference of two mean squares. Thus it is |
impossible to obtain usual F tests to test the hypothesis H,:0” (h)=0 against
H,:0”(h)>0.Now with

2 7(k)

6(!1_) = .’.!’EU(Q)*

> y(x)’

Weu(ny

these hypotheses can be rewritten as H,,: 6(h)=1 against H, :6(h)>1
Hence we can use generalized F tests with statistics
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() )2 AWz
I'GUZ(I )y 2o IeU(n) L Il’eUZ(Il)+ s®)
3(8)=6(8)= ) s@) G o() o)z
) _s() ) _osw) , Z el
Wel(h) WeU(h) I'eU(n)

where 7,(h") and 7, (k") are the nuisance parameters for the numerator and the
denominator, given by

and

weu(ny

In the next section we will discuss in detail whether either evenness condition is
met for these statistics when there are four factors.

3. Four-Factor Models

Now g, [ §z] will be the vector whose components are the degrees of freedom

of the g(h), he U(h). The degrees of freedom g(h) being even or odd will
depend on the a,(k,), b =0,...,u4;, I =1,...,L being even or odd.

3.1. Fully nested model

Since L=1, the UMVUE will be the difference of two mean squares and we may
use the usual F tests.

3.2. Two groups of nested factors that cross

3.2.1. The first factor nests the second that nests the third and crosses with
the fourth factor.
Since L=2 we write o’ (h,h,), m(h,h,) and g(k;,k,). The cases in which
m(hy,h,) is larger than 1 are

m(1,0)=m(2,0)=2,

so these are the cases for which we study the evenness conditions. The last
column of the following tables indicates which evenness conditions hold. These
conditions’ holding or not depends only on the number of levels:
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(a) For 02(1,0) we have eight possibilities according as 4, (1), 4 (2) and
a, (1) are even or odd. In Table 1 we present these possibilities.

Table 1 — Evenness Conditions

q (1) a, (2) a, (1) g(l,O) g(2,1) g(2,0) g(l,l) - Conditions
Even Even Even Odd Even Even Odd |  -----
Even Even Odd Odd Even Even Even 2
Even Odd Even Odd Even Even Odd |  -----
Even 0Odd 0dd Odd Even Even Even 2
Odd Even Even Even Odd Odd Even |  ----
Odd Even Odd Even Even Odd Even "
Odd Odd Even Even Even Even Even ¢ 2omd
0dd Odd 0dd Even Even Even Even 7 2

(b) For 6?(2,0) we have sixteen possibilities according as a, (1), 4(2),
a,(3) and a, (1) are even or odd. In Table 2 we present these possibilities.

Table 2 — Evenness Conditions

a(l) | q (2) a, (3) a, (1) g(2,0) g(3.1) g(3,0) g(2,1) Conditions
Even Even Even Even Even Even Even Even 1%, 2m
Even Even Even Odd Even Even Even Even 1, 2
Even Even 0dd Even Even Even Even Even 1, 2
Even | Even 0Odd 0Odd Even Even Even Even 1%, 2m
Even 0dd Even | Even Even Even Even Even 1%, 2M
Even Odd Even 0dd Even Even Even Even 1%, 2
Even Odd Odd Even Even Even Even Even 1%, 20
Even | Odd 0dd Odd Even Even Even Even 1™, 2
Odd Even Even Even Odd Even Even Odd | -
Odd Even Even Odd 0dd Even Even Even 2nd
Odd Even Odd Even Odd Even Even Odd | --—--
Odd | Even | 0Odd 0dd Odd Even Even Even 2™
Odd Odd Even Even Even Odd Odd Even | -
Odd Odd Even 0Odd Even Even Odd Even 1"
Odd Odd Odd Even Even Even Even Even 1%, 2™
0Odd Odd Odd 0dd Even Even Even Even 1%, 2"
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3.2.2. The first factor nests the second and crosses with the third that nests
the fourth factor.
Since L=2 we write ¢’ (h,h,), m(h,h,) and g(k;,k,). The cases in which
m(hy,h,) is larger than 1 are

m(1,0)=m(0,1)=m(1,1)=2,

so these are the cases for which we study the evenness conditions. The last
column of the following tables indicates which evenness conditions hold. These
conditions’ holding or not depends only on the number of levels:

(a) For 0 (1,0) we have eight possibilities according as 4, (1), a,(2) and
a, (1) are even or odd. In Table 3 we present these possibilities.

Table 3 — Evenness Conditions

o) | a2 | &) | e10) | g(21) | g(L) | £(20) | Conditions
Even Even Even Odd Even Odd Even | -
Even Even Odd Odd Even Even Even 2
Even Odd Even 0Odd Even Odd Even |  ----
Even 0dd 0dd Odd Even Even Even 2™
Odd Even Even Even Odd Even Odd -
Odd Even 0Odd Even Even Even 0dd ™
Odd Odd Even Even Even Even Even 1%, 2™
Odd Odd 0Odd Even Even Even Even 1%, 2™

(b) For 67 (0,1) we have eight possibilities according as g, (1), a,(1) and
a,(2) are even or odd. In Table 4 we present these possibilities.

Table 4 — Evenness Conditions

2 (1) | a,(1) | 4,(2) | 2(0.1) | 2(12) | g(L1) | £(0,2) | Conditions
Even Even Even Odd Even 0Odd Even | = -
Even Even Odd Odd Even 0Odd Even |  -—---
Even Odd Even Even Odd Even Odd |  --—--
Even Odd Odd Even Even Even Even 1%, 2nd
Odd Even Even Odd Even Even Even 2n
Odd Even 0dd Odd Even Even Even 2™
Odd Odd Even Even Even Even Odd 1
Odd 0dd Odd Even Even Even Even 1%, 2
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(c) For ¢”(1,1) we have sixteen possibilities according as 1), a(2),
a,(1) and a, (2) are even or odd. In Table 5 we present these possibilities.

Table 5 — Evenness Conditions

a, (1) a,(2) a,(1) | a,(2) | g(1,0) g(2.2) | g(1,2) | g(2.1) | Conditi
ons
Even Even Even Even Odd Even Even Even 20
Even Even Even Odd Odd Even Even Even ond
Even Even Odd Even Even Even Odd Even 1*
Even Even Odd Odd Even Even Even Even 1%, 2
Even Odd Even Even Odd Even Even Even 2nd
Even Odd Even Odd Odd Even Even Even 2™
Even Odd Odd Even Even Even 0dd Even *
Even Odd 0dd Odd Even Even Even Even 1, 2nd
Odd Even Even Even Even Even Even Odd *
0Odd Even Even Odd Even Even Even 0Odd 1™
Odd Even Odd Even Even Odd Even Even 2nd
0Odd Even Odd Odd Even Even Even Even 1, 2m
0dd Odd Even Even Even Even Even Even 1%, 2n
0dd Odd Even 0Odd Even Even Even Even 1%, 2m
Odd | Odd Odd Even Even Even Even Even 1%, 2nd
Odd Odd 0dd 0dd Even Even Even Even 1%, 2™

3.3. Three groups of nested factors that cross
Since L=3 we write 0 (b, h,,h), m(h,hy,h;) and g(k;,k,,k;). The cases in
which m(hy,hy,hy) is larger than 1 are

m(l,0,0) =3
and
m(O,l,O) = m(0,0,l) =m(1,1,0) =m(1,0,1) :m(2,0,0) =2,

so these are the cases for which we study the evenness conditions. The last
column of the following tables indicates which evenness conditions hold. These
conditions’ holding or not depends only on the number of levels:

(a) For 0?(1,0,0) we have sixteen possibilities according as a, (1), a,(2),
a,(1) and a,(1) are even or odd. In Table 6 we present these possibilities.
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and a; (1) are even or odd. In Table 7 we present these possibilities.

Table 7 — Evenness Conditions

119

(b) For 6(0,1,0) we have eight possibilities according as q, (1), a, (1)

a, (1) a, (1) a, (1) g(O,l,O) g(l,l,l) g(l,l,O) g(O,l,l) Conditions
Even Even Even Odd Odd Odd Odd | -
Even Even Odd Odd Even Odd Even | o
Even Odd Even Even Even Even Even 1%, 2
Even Odd Odd Even Even Even Even 1%, 2
Odd Even Even Odd Even Even Odd | -
0Odd Even QOdd Odd Even Even Even 2nd
Odd Odd Even Even Even Even Even 1, 2
Odd 0dd 0Odd Even Even Even Even 1%, 2

a;(1) are even or odd. In Table 8 we present these possibilities.

Table 8 - Evenness Conditions

(c) For 6?(0,0,1) we have eight possibilities according as a,(1), a,(1) and

a(1) | a,(1) | a (1) | £(0,0,1) g(1,11) g(1,0,1) g(0,1,1) | Conditions
Even Even Even Odd Odd Odd Odd | -
Even Even Odd Even Even Even Even 1%, 2™
Even Odd Even Odd Even Odd Even | -
Even Odd Odd Even Even Even Even 1%, 2
Odd Even Even Odd Even Even Odd | -
Odd Even 0Odd Even Even Even Even 1%, ond
Odd Odd Even Odd Even Even Even 2n
Odd Odd Odd Even Even Even Even 1, 2

(d) For 67 (1,1,0) we have sixteen possibilities according as g, (1), a,(2),
a,(1) and a,(1) are even or odd. In Table 9 we present these possibilities.
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Table 9 — Evenness Conditions

a()] a(2)] a,(1) ] a;(1) | g(L1, 0)| g(2.11)]| g(LL1)| g (2,1,0)| Conditio
ns

Even Even Even | Even Odd Even Odd Even | -
Even Even Even Odd Odd Even Even Even 2n
Even | Even Odd Even Even Even Even Even 1%, 2m
Even Even Odd Odd Even Even Even Even 1%, 2m
Even 0Odd Even Even Odd Even QOdd Even | -
Even Odd Even Odd Odd Even Even Even ond
Even Odd Odd Even Even Even Even Even 1%, 2m
Even Odd Odd Odd Even Even Even Even 1, 2™
0Odd Even Even Even Even 0Odd Even Odd | -
Odd | Even | Even | Odd Even Even Even Odd 1
Odd Even Odd Even Even Even Even Even ¥, 2n
Odd Even Odd 0dd Even Even Even Even 1%, 2
Odd | Odd | Even | Even Even Even Even Even 1, 2M
Odd Odd Even QOdd Even Even Even Even 1, 2nd
Odd | Odd 0Odd | Even Even Even Even Even 1%, 2
Odd | Odd | Odd | Odd Even Even Even Even 1%, 2%

(e) For 6?(1,0,1) we have sixteen possibilities according as (1), a(2),
a,(1) and a;(1) are even or odd. In Table 10 we present these possibilities.

Table 10 — Evenness Conditions

q, (1) a, (2) a, (1) a, (1) g(l,O,l) g(2,1,1) g(l,l,l) g(2,0,1) Conditio
ns
Even Even Even | Even Odd Even Odd Even | -
Even | Even | Even | Odd Even Even Even Even 1%, 2
Even Even Odd Even Odd Even Even Even ond
Even | Even QOdd Odd Even Even Even Even 1%, 2n
Even Odd Even Even Odd Even Odd Even |  -----
Even Odd Even Odd Even Even Even Even 1%, 2"
Even | Odd Odd | Even 0dd Even Even Even 2nd
Even | Odd | Odd | Odd Even Even Even Even 1*, 2™
Odd Even Even Even Even Odd Even Odd | ----
Odd Even | Even 0dd Even Even Even Even 1, 2
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Odd Even Odd Even Even Even Even Odd ™

Odd | Even | Odd Odd Even Even Even Even 1%, 2md
0dd Odd | Even | Even Even Even Even Even 1%, 2nd
Odd | Odd | Even | Odd Even Even Even Even 1%, 2™
Odd | Odd | Odd | Even Even Even Even Even 1%, 2
Odd | Odd 0dd | Odd Even Even Even Even 1%, 2™

(f) For 6 (2,0,0) we have sixteen possibilities according as q, (1), 4, (2),
a,(1) and a;(1) are even or odd. In Table 11 we present these possibilities.

Table 11 —- Evenness Conditions

a (l) a (2) a, (1) a, (l) g(2,0,0) g(2,1,1) g(2,1,0) g(2,0,1) Conditio
ns

Even | Even | Even | Even Even Even Even Even 1%, 2
Even | Even | Even Odd Even Even Even Even 1%, 2™
Even | Even | Odd | Even Even Even Even Even 1%, 2n
Even | Even | Odd Odd Even Even Even Even 1%, 2
Even { Odd | Even | Even Even Even Even Even 1%, 2
Even Odd Even Odd Even Even Even Even 1%, 2™
Even 0Odd Odd Even Even Even Even Even 1, 2
Even Odd Odd Odd Even Even Even Even 1%, 2
Odd Even Even | Even Odd Odd Odd Odd | -
Odd Even Even Odd Odd Even 0Odd Even | -
Odd Even Odd Even Odd Even Even Odd | -----
Odd | Even [ Odd | Odd Odd Even Even Even 2™
Odd Odd Even | Even Even Even Even Even 1%, 2n
Odd Odd Even 0Odd Even Even Even Even 1, 2
Odd | Odd | Odd | Even Even Even Even Even 1%, 2
0dd Odd 0Odd 0dd Even Even Even Even 1, 2

3.4. Four factors that cross
Since L=4 we write 62 (I, hy,hy,h,), m(hyhy,hy,h,) and g (k;.ky. ks k, ) . The
cases in which m(h,h,,hy,h,) is larger than 1 are
m(1,0,0,0)=m(0,1,0,0) =m(0,0,1,0) =m(0,0,0,1) =3
and
m(1,1,0,0) = m(1,0,1,0)=m(1,0,0,1) = m(0,0,1,1) = m(0,1,1,0) = m(0,1,0,) =2,
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(e) For 0?(1,1,0,0) we have sixteen possibilities according as q, (1),
a,(1), a;(1) and a,(1) are even or odd. In Table 16 we present these
possibilities.

Table 16 - Evenness Conditions

a ()| a,(1)] a;(1)| a,(1)| g(1,1,0,0] g(L1,L,1)] g(1,1,1,0] £(1,1,0,1] Conditio
ns

Even | Even | Even | Even Odd Odd Odd Odd | -
Even | Even | Even | Odd Odd Even Odd Even | -
Even | Even Odd | Even Odd Even Even Odd | --—-
Even | Even | Odd Odd Odd Even Even Even P
Even | Odd | Even | Even Even Even Even Even 1%, 2m
Even | Odd | Even | Odd Even Even Even Even 1%, 2
Even | Odd | Odd | Even Even Even Even Even 1%, 2™
Even | Odd Odd Odd Even Even Even Even 1%, 2M
Odd | Even | Even | Even Even Even Even Even 1%, 2n
Odd | Even | Even | Odd Even Even Even Even 1%, 2M
Odd | Even | Odd | Even Even Even Even Even 1, 2M
Odd | Even | Odd | Odd Even Even Even Even 1%, 2"
Odd Odd | Even | Even Even Even Even Even 1%, 2
Odd Odd | Even | Odd Even Even Even Even 1%, 2M
Odd Odd Odd | Even Even Even Even Even 1%, 2n
Odd | Odd | Odd Odd Even Even Even Even 1%, 2nd

(f) For 0*(1,0,1,0) we have sixteen possibilities according as g, (1), a,(1),
a;(1) and a, (1) are even or odd. In Table 17 we present these possibilities.

Table 17 — Evenness Conditions

a ()| a, (1)} a3 ()| a,(1)| £(1,0,1,0] g(1,1,1,1 g(1,1,1,0] £(1,0,1,1] Conditio

ns

Even | Even | Even | Even Odd Odd Odd Odd | -
Even | Even | Even Odd Odd Even Odd Even | -
Even | Even Odd Even Even Even Even Even 1, 2™
Even | Even Odd Odd Even Even Even Even 1, 2md
Even | Odd | Even | Even Odd Even Even Odd | --—---

Even Odd Even Odd Odd Even Even Even ond
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Even | Odd Odd | Even Even Even Even Even 1%, 2nd
Even | Odd | Odd | Odd Even Even Even Even 1%, 2™
Odd | Even | Even | Even Even Even Even Even 1%, 2M
Odd | Even | Even | Odd Even Even Even Even 1%, 2m
Odd | Even | Odd | Even Even Even Even Even 1%, oM
Odd | Even | Odd Odd Even Even Even Even 1%, 2nd
Odd | Odd | Even | Even Even Even Even Even 1%, 2M
Odd | Odd | Even | Odd Even Even Even Even 1%, 2
Odd | Odd | Odd | Even Even Even Even Even 1%, 2™
Odd Odd Odd Odd Even Even Even Even 1%, 2m
(g) For ¢2(1,0,0,1) we have sixteen possibilities according as g (1),

a,(1), a (1)

possibilities.

and a,(1) are even or odd. In Table 18 we present these

Table 18 — Evenness Conditions

a(1)| a,(1)] a5 (1) a,(1)] £(1,0,0.1] g(LLLI] g(11,0,1] g(1,0.1,1] Conditio
ns

Even | Even | Even | Even Odd Odd Odd Odd | -
Even | Even | Even | Odd Even Even Even Even 1, 2md
Even | Even | Odd | Even Odd Even Odd Even | -
Even | Even | Odd | 0dd Even Even Even Even 1%, 2nd
Even | Odd | Even | Even Odd Even Even Odd | -
Even | Odd Even Odd Even Even Even Even 1, o
Even [ Odd | Odd | Even Odd Even Even Even 2
Even | Odd | Odd | Odd Even Even Even Even 1%, 2
Odd | Even | Even | Even Even Even Even Even 1%, 2
Odd | Even | Even | Odd Even Even Even Even 1%, 2m
Odd | Even | Odd | Even Even Even Even Even 1%, 2
Odd | Even | Odd | Odd Even Even Even Even ¢, 2m
Odd | Odd | Even | Even Even Even Even Even 1%, 2m
Odd | Odd | Even | Odd Even Even Even Even 1%, 2
Odd | Odd | Odd | Even Even Even Even Even 1, 2
Odd Odd Odd Odd Even Even Even Even 1%, 2
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(h) For 02(0,0,1,1) we have sixteen possibilities according as g (1),
a,(1), a;(1) and a,(1) are even or odd. In Table 19 we present these
possibilities.

Table 19 — Evenness Conditions

aq, (1) a, (1) a, (1) a, (1) g(0,0,],l g(l,l,l,l g(l,O,l,l g(O,l,l,l Conditio
ns

Even | Even | Even | Even Odd Odd 0Odd Odd | ----
Even | Even | Even Odd Even Even Even Even 1%, 2m
Even | Even 0Odd Even Even Even Even Even 1%, 2M
Even | Even | Odd QOdd Even Even Even Even 1%, 2™
Even | Odd | Even | Even Odd Even Odd Even | -—--
Even | Odd | Even | Odd Even Even Even Even 1%, 2™
Even | Odd | Odd | Even Even Even Even Even 1%, 2m
Even | Odd | Odd | Odd Even Even Even Even 1%, 2M
Odd | Even | Even | Even Odd Even Even Odd | -
Odd | Even | Even | 0Odd Even Even Even Even 1%, 2
Odd | Even | Odd | Even Even Even Even Even 1%, 2
Odd | Even | Odd | Odd Even Even Even Even 1, 2
Odd | Odd | Even | Even Odd Even Even Even P
Odd | Odd | Even | Odd Even Even Even Even 1%, 2
Odd | Odd | Odd | Even Even Even Even Even 1%, 2"
Odd | Odd | Odd | Odd Even Even Even Even 1, 2

(i) For 6%(0,1,1,0) we have sixteen possibilities according as (1), a,(1),
a,(1) and a, (1) are even or odd. In Table 20 we present these possibilities.

Table 20 — Evenness Conditions

al(l) az(l) a3(1) a4(1) g(O,l,l,O g(l,l,l,l g(l,l,l,O g(O,l,l,l Conditio

ns

Even | Even | Even | Even Odd Odd Odd Odd | -
Even | Even | Even | Odd Odd Even Odd Even | -
Even | Even | Odd | Even Even Even Even Even 15, 2m
Even | Even | Odd | Odd Even Even Even Even 1%, 2%
Even | Odd | Even | Even Even Even Even Even 1%, 2n

Even Odd Even Odd Even Even Even Even 1%, 2™
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Even | Odd | Odd | Even Even Even Even Even 1%, 2M
Even | Odd | Odd | Odd Even Even Even Even 1+, 2
Odd | Even | Even | Even Odd Even Even Odd | -

Odd | Even | Even | Odd 0dd Even Even Even 2~

Odd | Even | Odd | Even Even Even Even Even 1%, 2n
Odd | Even | Odd | Odd Even Even Even Even 1%, 2™
Odd | Odd | Even | Even Even Even Even Even 1%, 2™
Odd | Odd | Even | Odd Even Even Even Even 1%, 2
Odd Odd Odd | Even Even Even Even Even 1%, 2m
Odd Odd Odd Odd Even Even Even Even 1%, 2™

(i) For 02 (0,1,0,1) we have sixteen possibilities according as (1), a, (1),
a; (1) and a, (1) are even or odd. In Table 21 we present these possibilities.

Table 21 - Evenness Conditions

a,(1)| a,(1)] a, M| a, (D} £(0,1,0,1 g(LLL1 g(1,1,0,1] g(0,1,1,1] Conditio
ns

Even | Even | Even | Even Odd Odd Odd Odd | --—-
Even | Even | Even Odd Even Even Even Even 1%, 2m
Even | Even { Odd | Even Odd Even Odd Even | -
Even | Even | Odd Odd Even Even Even Even 1, 2nd
Even | Odd | Even | Even Even Even Even Even 1%, 2m
Even | Odd | Even | Odd Even Even Even Even 1%, 2M
Even | Odd Odd Even Even Even Even Even 1%, 2m
Even | Odd | Odd | Odd Even Even Even Even 1%, 2™
Odd | Even | Even | Even Odd Even Even Odd | --—---
Odd | Even | Even | Odd Even Even Even Even 1+, 2
Odd | Even | Odd | Even Odd Even Even Even 2nd
Odd | Even | Odd | Odd Even Even Even Even 1%, ond
Odd Odd Even | Even Even Even Even Even 1%t ond
Odd | Odd | Even | Odd Even Even Even Even 1%, 2m
Odd Odd Odd | Even Even Even Even Even 1%, 2nd
Odd Odd Odd Odd Even Even Even Even 1, 2m
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4. Final comments

We now can observe that in more then half of the possible combinations of
degrees of freedom, at least one of the evenness conditions holds. Therefore the
situation in which we have an exact distribution for the generalized F tests is by
no means a rare one if there are four factors.
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